The code I'm currently using for my projectile was heavily inspired by an answer I found on a game development forum, but it's not working as expected. Most of the time, the initial direction of the projectile is perpendicular to the target instead of homing in on it. Sometimes, it does start moving towards the target after passing by, but then it seems frozen at a certain point before catching up to the target with unusual movement. There's a line of code that I suspect might be causing the issue, where V3 and V4 variables are used in the algorithm, which seems like a potential typo. If anyone could provide some guidance on what might be going wrong here, I would greatly appreciate it.
normalizedDirectionToTarget = root.vector.normalize(target.pos.x - attack.x, target.pos.y - attack.y) #V4
V3 = root.vector.normalize(attack.velocity.x, attack.velocity.y)
normalizedVelocity = root.vector.normalize(attack.velocity.x, attack.velocity.y)
angleInRadians = Math.acos(normalizedDirectionToTarget.x * V3.x + normalizedDirectionToTarget.y * V3.y)
maximumTurnRate = 50 #in degrees
maximumTurnRateRadians = maximumTurnRate * (Math.PI / 180)
signOfAngle = if angleInRadians >= 0 then 1 else (-1)
angleInRadians = signOfAngle * _.min([Math.abs(angleInRadians), maximumTurnRateRadians])
speed = 3
attack.velocity = root.vector.normalize(normalizedDirectionToTarget.x + Math.sin(angleInRadians), normalizedDirectionToTarget.y + Math.cos(angleInRadians)) #I'm very concerned this is the source of my bug
attack.velocity.x = attack.velocity.x * speed
attack.velocity.y = attack.velocity.y * speed
attack.x = attack.x + attack.velocity.x
attack.y = attack.y + attack.velocity.y
Edit: Code that Works
normalizedDirectionToTarget = root.vector.normalize(target.pos.x - attack.x, target.pos.y - attack.y) #V4
normalizedVelocity = root.vector.normalize(attack.velocity.x, attack.velocity.y)
angleInRadians = Math.acos(normalizedDirectionToTarget.x * normalizedVelocity.x + normalizedDirectionToTarget.y * normalizedVelocity.y)
maximumTurnRate = .3 #in degrees
maximumTurnRateRadians = maximumTurnRate * (Math.PI / 180)
crossProduct = normalizedDirectionToTarget.x * normalizedVelocity.y - normalizedDirectionToTarget.y * normalizedVelocity.x
signOfAngle = if crossProduct >= 0 then -1 else 1
angleInRadians = signOfAngle * _.min([angleInRadians, maximumTurnRateRadians])
speed = 1.5
xPrime = attack.velocity.x * Math.cos(angleInRadians) - attack.velocity.y * Math.sin(angleInRadians)
yPrime = attack.velocity.x * Math.sin(angleInRadians) + attack.velocity.y * Math.cos(angleInRadians)
attack.velocity = root.vector.normalize(xPrime, yPrime)
attack.velocity.x *= speed
attack.velocity.y *= speed
attack.x = attack.x + attack.velocity.x
attack.y = attack.y + attack.velocity.y